
i231 The Economics of Open Source Software Ram Joshi 1

1. A brief history of Open Source Software (OSS)

Free/open source software (F/OSS) has its roots from near the beginning of

computing and is typically free while providing users with source code that is

usually shared via the internet and can be adjusted for users’ own needs. In the

1960s, while using computers for their work, researchers had to share software

code because commercial software was not available (Moon & Sproull, 2002). The

three major eras in the history of OSS are discussed here.

1.1 First era

In the 1960s, key features of operating systems and the Internet were developed

by computer scientists working in Academic settings such as Berkeley and MIT.

Corporate research facilities like those at Bell Labs and Xerox also played an

important role in developing these essential components of modern computing. A

significant milestone of this era was the development of the UNIX operating system

by a group of AT&T employees at Bell Labs. The popularity and growth of UNIX was

significantly aided by its adoption in academia by virtue of its source code being

freely available. Several independent computer scientists and programmers

contributed to building software that eventually became part of the UNIX system.

1.2 Second era

In the early 1980s, AT&T, motivated by the huge growth of UNIX, began

enforcing its purported intellectual property rights on the software. In response to

this threat, Richard Stallman - then a young computer scientist at MIT artificial

i231 The Economics of Open Source Software Ram Joshi 2

intelligence - founded the Free Software foundation and introduced the General

Public License (GPL) for a computer operating system called GNU. GNU was

envisioned as a F/OSS operating system similar in design to UNIX but governed by

the terms of the GPL, which would essentially ensure that any additions and

enhancements to the software were distributed under the same GPL license. These

terms made the GPL viral in nature. Stallman saw this as essential for ensuring that

F/OSS remains free and open source and is constantly improved through global

collaboration. However the GNU operating system was still lacking an essential

component – a kernel.

1.3 Third era

In 1991, Linux Torvalds developed the LINUX kernel. He released the kernel

source code under a GPL license and Linux became a part of the GNU/Linux

operating system, one of the most popular and successful open source software

projects today. Another significant piece of open source software was developed in

1994 by Brian Behlendorf. This was the Apache web server. As of May 2011 Apache

was estimated to serve 63% of all websites and 66% of the million busiest.1 More

recently OSS technologies such as Sendmail, PERL, PHP, Python have become

indispensible components of computing and the Internet.

2. Valuation of OSS

1 “May 2011 Web Server Survey | Netcraft”, n.d.,
http://news.netcraft.com/archives/2011/05/02/may-2011-web-server-
survey.html.

i231 The Economics of Open Source Software Ram Joshi 3

2.1 GNU/Linux

One of the earliest attempts at market valuation of a major OSS project was

made by David A. Wheeler in 2001.2 He used Red Hat Linux 7.1 as a representative

GNU/Linux distribution. He based his estimate on analyzing the amount of source

code in GNU/Linux - “It would cost over $1 billion ($1,000 million - a Gigabuck) to

develop this GNU/Linux distribution by conventional proprietary means in the U.S.

(in year 2000 U.S. dollars). Compare this to the $600 million estimate for Red Hat

Linux version 6.2 (which had been released about one year earlier). Also, Red Hat

Linux 7.1 includes over 30 million physical source lines of code (SLOC), compared to

well over 17 million SLOC in version 6.2. Using the COCOMO cost model, this system

is estimated to have required about 8,000 person-years of development time (as

compared to 4,500 person-years to develop version 6.2). Thus, Red Hat Linux 7.1

represents over a 60% increase in size, effort, and traditional development costs

over Red Hat Linux 6.2. This is due to an increased number of mature and maturing

open source / free software programs available worldwide.“3

The following table compares the size of Red Hat Linux 7.1 with other large

software systems in terms of SLOC.

2 “More than a Gigabuck: Estimating GNU/Linux’s Size”, n.d.,
http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html.
3 Ibid.

i231 The Economics of Open Source Software Ram Joshi 4

Product SLOC

NASA Space Shuttle flight control 420K (shuttle) + 1.4 million (ground)

Sun Solaris (1998-2000) 7-8 million

Microsoft Windows 3.1 (1992) 3 million

Microsoft Windows 95 15 million

Microsoft Windows 98 18 million

Microsoft Windows NT (1992) 4 million

Microsoft Windows NT 5.0 (as of 1998) 20 million

Red Hat Linux 6.2 (2000) 17 million

Red Hat Linux 7.1, at over 30 million physical SLOC, is much larger than these

systems. Wheeler computed the estimated cost of developing Linux using the

COCOMO (Boehm, 1981) as follows.4

Total Physical Source Lines of Code (SLOC) = 30152114

Estimated Development Effort in Person-Years (Person-Months) = 7955.75 (95469)

(Basic COCOMO model, Person-Months = 2.4 * (KSLOC**1.05))

Estimated Schedule in Years (Months) = 6.53 (78.31)

(Basic COCOMO model, Months = 2.5 * (person-months**0.38))

Total Estimated Cost to Develop = $ 1074713481#

#(average salary = $56286/year, overhead = 2.4).

4 Ibid.

i231 The Economics of Open Source Software Ram Joshi 5

2.2 OSS

 In 2008, Black Duck Software, using a similar COCOMO model, estimated the

cumulative cost of all OSS software on the Internet. They estimated that it would

take $387 billion to develop the available OSS by traditional proprietary means in

year 2008 dollars. Their COCOMO estimates are as follows.

The basic COCOMO equations take the form:

E=ab(KLOC)^bb

D=cb(E)^db

P=E/D

where E is the effort applied in person-months, D is the development time in

chronological months, KLOC is the estimated number of delivered lines of code for

the project (expressed in thousands), and P is the number of people required. The

coefficients ab, bb, cb and db are given in the following table.5

COCOMO coefficients for OSS valuation

5 “Details - Estimating the Development Cost of Open Source Software | Black Duck
Software”, n.d., http://www.blackducksoftware.com/development-cost-of-open-
source-details.

i231 The Economics of Open Source Software Ram Joshi 6

Software project ab bb cb db

Organic 2.4 1.05 2.5 0.38

Semi-detached 3.0 1.12 2.5 0.35

Embedded 3.6 1.20 2.5 0.32

COCOMO calculations

COCOMO Cost Estimates

ab 2.4

bb 1.05

KLOC 4,932,000

E (P-Months) 25,579,112

E (P-Years) 2,131,593

Average salary $ 75, 662

i231 The Economics of Open Source Software Ram Joshi 7

Overhead (wrap rate) 2.40

Total Estimated Development

Cost
$387,073,763,266

3. Free Software and Imputation

3.1 Imputed Value

The economic theory of imputation says that the value of a good is more a

matter what the buyer is willing to pay than the cost the seller incurs to create it.

Carl Menger, the founder of the Austrian school of economics, first expounded the

theory of imputation. This theory is contrary to the labor theory of value maintained

by classical economists such as Adam Smith. The value of OSS calculated using

COCOMO confirms with the classical approach of determining factor prices using the

cost of labor and other resources. Imputation suggests that the value was not made

up of the factors that made up a good; instead, it was made up of the most valuable

use that the last good could be put to—the marginal utility of the finished good. In

the case of F/OSS it is not easy to determine this imputed value since F/OSS is

essentially a higher order good, unlike a consumer good whose value can be

determined by its optimum sales price in the market. F/OSS itself serves as a factor

of production in other large and complex software projects, both open source and

corporate and powers nearly every large website or software system in the world. It

i231 The Economics of Open Source Software Ram Joshi 8

is the cumulative marginal utility of all these secondary consumers of F/OSS that

would determine its value. This implies that F/OSS is highly valuable despite being

free.

3.2 Motivation and utility

 While it is clear that consumers of F/OSS derive considerable utility through

using free software to run their own software systems, the question still remains as

to what is the value of F/OSS to programmers and hackers who actually build free

software without expecting any financial benefits or intellectual property rights.

One possible explanation is given by Eric. S. Raymond, a popular hacker in the OSS

community - “The ‘utility function’ Linux hackers are maximizing is not classically

economic, but is the intangible of their own ego satisfaction and reputation among

other hackers. ... Voluntary cultures that work this way are not actually uncommon;

one other in which I have long participated is science fiction fandom, which unlike

hackerdom has long explicitly recognized ‘egoboo’ (ego-boosting, or the

enhancement of one’s reputation among other fans) as the basic drive behind

volunteer activity.” This ‘egoboo’ phenomenon may be one of the motivations for

tenured academics to publish papers.6

6 “The Cathedral and the Bazaar”, n.d.,
http://www.catb.org/~esr/writings/homesteading/cathedral-bazaar/.

i231 The Economics of Open Source Software Ram Joshi 9

Additionally, individuals participating in OSS development projects can

increase their potential wages and income in the future due to development of

market signals (Spence, 1974) and individual reputation.7

4. Why use F/OSS?

 Richard E. Hawkins examines why computing projects use F/OSS in his paper

titled “Netnomics” (2004), and the answer may simply be “Well, why not?” For a

computing project, the costs can be divided into hardware costs for the purchase of

equipment E, the purchase of the software at a price B, internal administrative costs

A, external support costs S, and down time costs D to the firm from times when the

system is unavailable due to failure or while waiting for repair of hardware or

software, for a total cost C.8

This can be expressed as follows.

Cost to consumer, C = E + B + A + S + D

When deciding between alternative software systems, the consumer’s problem is to

minimize the following.

minC = A + S + D

7 Chong Ju Choi, Sae Won Kim, and Shui Yu, “Global Ethics of Collective Internet
Governance: Intrinsic Motivation and Open Source Software,” Journal of Business
Ethics 90, no. 4 (December 1, 2009): 523-531.
8 Richard E. Hawkins, “The economics of open source software for a competitive
firm,” NETNOMICS: Economic Research and Electronic Networking 6, no. 2 (August
2004): 103-117.

i231 The Economics of Open Source Software Ram Joshi 10

With A << C (administrative costs become insignificant as project members become

familiar with a software system or already know how to manage it), there is no

compelling reason to use or not use open source software.

5. Why give software away for free?

 R. E. Hawkins, in the same paper, examines why companies may choose to

give software away as F/OSS. An important example in analyzed in the paper is

Apple’s Darwin, the operating system that runs underneath its OS X.

5.1 Costs and strategic concerns for the firm

 Hawkins models an economics strategy for F/OSS firms - Open source is not

an exception to the laws of economics, recent dotcom hysteria not withstanding. To

continue its existence, a firm must incur expenses, which in the long run must be

less than its revenues. Relying upon open source software will incur expenses,

possibly even greater than those incurred in a proprietary solution. The goal of the

firm is not to maximize revenue, nor to minimize expense, but to maximize the

amount by which revenues exceed expenses.

Of particular concern to the firm is the possibility of decreased development costs

with open source software, both in development and maintenance: if the source is

open and used by others, the firm can take advantage of the development work of

others. Weighing against this benefit is the ability of other firms to benefit as well.

This introduces strategic considerations from the firm: how will other firms react to

the firm’s release of the source, and whether the losses L resulting from sales lost to

i231 The Economics of Open Source Software Ram Joshi 11

other firms will be greater than the savings in development costs D. The costs to the

firm can then be represented as follows.

C = D + L9

5.1 Strategic games

Regarding Darwin, Hawkins says, “Darwin is derived from FreeBSD, NetBSD,

and the Mach microkernel from Carnegie Mellon University, all of which are under

public licenses. It also has technology from NeXT, which was purchased by Apple. It

was entirely within Apple’s ability to retain the changes made. Nonetheless, Apple

released Darwin under a public license. Furthermore, Apple fed large numbers of

bug fixes back to NetBSD, in spite of the absence of any obligation to do so. Apple’s

motivation may be seen in its announcement that it will be “synchronizing” Darwin

to FreeBSD: by turning over its own changes, even those that would give it some

competitive advantage, Apple’s product is “automatically” maintained. If Apple were

to make a private change in the code, it would benefit in the short run. In the long

run, another change would be made in the same sections of the “other” source base.

As Apple’s code would now be different, the change could not be directly made; that

is, the opportunity cost of keeping the changes is forgoing the external maintenance.

Apple has no interest in Darwin in and of itself; it is a necessary component for its

OS X product – and a component that Apple tried and failed to develop at least

twice.”

9 Ibid.

i231 The Economics of Open Source Software Ram Joshi 12

The following game demonstrates why open source was the optimum strategy for

Apple in the case of Darwin.

This table shows the game for a hardware firm, which needs a program as part of its

product and faces no direct competitor able to benefit from the code. If the firm

chooses a proprietary design, the cost is 10 (payoffs are reported relative to this

amount). However, there is a program already available, as in the case of Apple and

Darwin, which can be used by the firm, reducing the cost by 5. With no competitor

to take advantage of the code, there is no incentive for the firm to not release the

changes (as is the case for a viral license). The only other player is the public, which

can either ignore the code, or can contribute and release changes. Between these

changes and the fact that the public will provide a portion of the regular

maintenance of the software, the firm obtains an additional payoff of 2 when the

public chooses to contribute. In this case, the open source option is a dominant

strategy – D is lower for the firm regardless of the choice made by the public.10

A similar game can be used to analyze the optimum licensing strategy for the firm.

This is demonstrated in the following table.

10 Ibid.

i231 The Economics of Open Source Software Ram Joshi 13

In this game the public license is the dominant strategy. BSD and MIT are examples

of public licenses. These licenses are less restrictive than public licenses such as the

GPL.

By using a public license, Apple was entitled to keep the code changes, but

chose to forgo doing so for strategic reasons. If Apple had used a viral code base,

however, not only would it have been forced to release the Darwin code, but would

also have had to either take great care to insure that no portion of OS X was a

“derived work” of Darwin within the meaning of copyright law (which might or

might not have been possible), or release the source to OS X.11 This explains why the

utility for the firm is lower (5) in the case of a viral license as compared to a public

license (7).

The viral license can only be used by a subset of the public that could use the

public license. This is necessarily true, as the use of public code in a viral project is

possible with all major licenses in use today, while the converse is not true. These

11 Ibid.

i231 The Economics of Open Source Software Ram Joshi 14

constraints lower the utility of the code for both the firm and the public in the case

of viral licenses as compared to public licenses.

However, public licenses such as GPL and LGPL are far more popular in the

industry than public licenses. This is a result of the fact that in real world game

situations very few firms use software systems that have no competitor in the

market. The following game demonstrates how viral licenses are the optimum

strategy when a firm has a competitor for its software in the market.

The viral license is the dominant strategy for the firm in this game since it

essentially eliminates the possibility of a competitor using the firms code and

hoarding its enhancements and modifications, which could result in larger market

share for the competitor’s product.

 In this game, the cost to the firm of 1 for monitoring a viral license is kept.

The firm is assumed to benefit by 2 for the contributions, if any, from the public and

by 1 from contributions by the competitor. However, if the firm must face the

competitor in the market places, it suffers losses L of 3 due to lost sales, while it

faces a loss of only 1 if it can incorporate the competitor’s changes into its own

product. The public receives a gain of 1 if contributions are made by the competitor.

i231 The Economics of Open Source Software Ram Joshi 15

The ability to acquire the software is valued by the competitor as 3 if it keeps its

changes private, with an additonal 1 for contributions by the public, but at only 1 if

it releases them, as its product could be obtained at no cost. The public values the

contributions by the competitor at 2. With a public license, the competitor may

choose to either “hoard” any changes it makes for its own use, or contribute them

back to the general project.

In this game, the firm’s best choice is a viral license. If it chooses a public license, the

market competitor can take the software, inflicting losses L, with no offset to the

firm. The viral license forces the competitor to release changes, which (in this case)

yields the same payoff for the firm as if the competitor had ignored the software.12

6. Business Models

 Now that we understand the economics of why firms use and develop F/OSS

and which OSS licenses are optimum in the market, we finally looks at some of the

popular business models for F/OSS.13

The following table is adapted from Raymond (2000b).

12 Ibid.
13 “The Cathedral and the Bazaar.”

i231 The Economics of Open Source Software Ram Joshi 16

7. Conclusion

 F/OSS is a valuable commodity in the market, whether one considers its

value as imputed or not. Despite the common assumption that F/OSS developers are

altruists giving away valuable software for free, there are established economics

theories that can explain that individuals and firms are maximizing some utility

function while using and creating OSS. Strategic games can be used to analyze and

explain why firms give away software as open source and for free. Economics can

also explain why one form of OSS licenses may be better than others in a given

market situation. Public licenses such as BSD are a good strategy in the absence of a

direct competitor, but viral licenses such as GPL prevent competitors from hoarding

software enhancements and are a good strategy in competitive markets. F/OSS is

not only about releasing software for free along with its source code but there are

several business models that can be built around a F/OSS system.

i231 The Economics of Open Source Software Ram Joshi 17

References

Choi, Chong Ju, Sae Won Kim, and Shui Yu. “Global Ethics of Collective Internet
Governance: Intrinsic Motivation and Open Source Software.” Journal of
Business Ethics 90, no. 4 (December 1, 2009): 523-531.

“Details - Estimating the Development Cost of Open Source Software | Black Duck
Software”, n.d. http://www.blackducksoftware.com/development-cost-of-
open-source-details.

Hawkins, Richard E. “The economics of open source software for a competitive
firm.” NETNOMICS: Economic Research and Electronic Networking 6, no. 2
(August 2004): 103-117.

“May 2011 Web Server Survey | Netcraft”, n.d.
http://news.netcraft.com/archives/2011/05/02/may-2011-web-server-
survey.html.

“More than a Gigabuck: Estimating GNU/Linux’s Size”, n.d.
http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html.

“The Cathedral and the Bazaar”, n.d.
http://www.catb.org/~esr/writings/homesteading/cathedral-bazaar/.

